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Abstract. We considerN coupled linear oscillators with time-dependent coefficients. An
exact complex amplitude–real phase decomposition of the oscillatory motion is constructed.
This decomposition is further used to deriveN exact constants of motion which generalize the
so-calledErmakov–Lewis invariantof a single oscillator. In the Floquet problem of periodic
oscillator coefficients we discuss the existence of periodic complex amplitude functions in terms
of existing Floquet solutions.

The construction of time-dependent integrals of motion for the parametric harmonic
oscillator is currently of interest for the canonical formulation of more general parametric
systems [1–4], their semiclassical quantization [5, 6] and the theory of coherent and squeezed
states [7–10]. Integrals of one-dimensional motion that are quadratic in position and
momentum were rediscovered by Lewis and co-workers [11–13], unaware of Ermakov’s
results [14]. Time-dependent constants of motion, which are linear in momentum and
position, have been developed beyond the single degree of freedom [15]. In either case the
connection to the abstract symmetries of Noether’s theorem has been established [16], and
for the quadratic case the relation to Berry’s phase is also revealed [17]. Previous studies
of the invariants forN -dimensional linear oscillators have been mainly restricted to the
(decoupled) anisotropic case [18]

ẍi + ki(t)xi = 0 i = 1, . . . , N (1)

or to the isotropic oscillator

ẍi + k(t)xi = 0 i = 1, . . . , N (2)

(see, e.g. [18–21]). Here we report the first construction of the (quadratic) Ermakov–Lewis
invariant for coupled parametric oscillators.

In the recent applications of theErmakov–Lewis invariantin semiclassical narrow-
tube quantizations [5, 22] and time-dependent normal-form transformations [4, 23], the
amplitude-phase analysis [14, 24] of solutions has been an important element. We briefly
summarize the basic equations for the single degree of freedom.

In the parametric oscillator equation:

ẍ + k(t)x = 0 (3)

the amplitude-phase ansatzx(t) = ρ(t) exp(iφ(t)) with real and positive functionsρ(t) and
φ(t), results in two separated equations:

ρ̈ + k(t)ρ = 32

ρ3
(4)
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and

φ̇ = 3

ρ2
(5)

with an arbitrary parameter3 > 0. The Ermakov–Lewis invariant (see [11], and more
recent comments in Lichtenberg and Lieberman [25]):

L = 1

23
((pρ(t)− qρ̇(t))2+32(q/ρ(t))2) (6)

is a non-trivial combination of the canonical variables(p, q) = (ẋ, x), andρ(t), whereρ(t)
is a particular solution of the auxiliary Milne equation (4). For time-periodic coefficients
k(t), the Ermakov–Lewis invariant is an explicit expression for the invariant cross section
(at fixed times) of the phase-space flow on vortex tubes, providedρ(t) > 0 is a particular
periodic Milne (amplitude) solution.

Indeed, since we consider an integrable case, the trajectories can be described in terms
of an action variable and an angle variable. The Ermakov–Lewis invariant is identical to the
action variable, but the corresponding angle variable has a time-dependent time derivative
(i.e. the angular velocity is time-dependent). In the periodic case they parametrize, together
with the time variable, the surface of a manifold which has the topology of a cylinder, a
so-called vortex tube, and the whole phase space is entirely stratified into such vortex tubes.
The vortex tubes can be considered closed with the natural angle identification 0= 2π , as
discussed in [5, 22]. When one is actually mapping a single calculated trajectory in the
interval [0, 2π ] of (p, q, t)-space, this will appear winding along one of the vortex tubes
and eventually it fills its surface.

In this letter we generalize the amplitude-phase idea to coupled equations of classical
parametric oscillators, and later use this idea in the construction of the new invariants, which
reduce to the Ermakov–Lewis invariants in the uncoupled limit.

The equations of motion for the coupled oscillators are given by

r̈ + k(t)r = 0 (7)

where we have introduced theN -dimensional column vector

r(t) =


x1(t)

x2(t)
...

xN(t)

 (8)

and thereal symmetricN ×N ‘angular velocity’ matrix

k(t) =
 k11(t) · · · k1N(t)

...
...

...

kN1(t) · · · kNN(t)

 . (9)

Equation (7) appears in many different branches of theoretical physics: collisions of atoms,
molecules and nuclei; scattering of wave components propagating in inhomogeneous media;
mechanical oscillations, stability analysis of nonlinear oscillations, etc.

We try to develop an amplitude-phase decomposition which generalizes the approach
in [5]. We put as basic amplitude-phase solutions:

r(t) = Rj (t) = uj (t) exp(iφj (t)) (10)

whereuj (t) is a so far unspecifiedcomplexvector function while the phaseφj (t) is assumed
to be real and positive. The important assumption is the realness of the phase, this seems
to rule out the realness ofuj (t) in the vector case (but not in the scalar case). Similar
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considerations have been made by Fulling [26, 27] in his search forapproximatesolutions
of (7) in a different context.

An independent oscillatory solution given by the complex conjugate of (10), i.e.

r∗(t) = R∗j (t) = u∗j (t) exp(−iφj (t)) (11)

will also solve the equation (7) with realk(t). The index refers to our expectation of finding
N independentpairs of solutions of this form. On substituting the ansatz (10) into (7), we
find

üj − φ̇2
j uj + k(t)uj + i(φ̈juj + 2φ̇j u̇j ) = 0. (12)

We have the freedom to introduce an auxiliary condition, since we introduced the phase
φj (t) in addition to the complex vectoruj . In analogy with the one-dimensional case we
could choose to set the imaginary parts of the equations equal to zero; but this turns out to
be too restrictive in general. Instead, by suitable scalar multiplications of equation (12) and
its complex conjugate, followed by a subtraction, we find:

üj · u∗j − ü∗j · uj + 2i(φ̈ju
2
j + φ̇j du2

j / dt) = 0 (13)

whereu2
j = uj ·u∗j is the ‘real amplitude’ squared. Our choice is to eliminate the bracketed

terms, which results in the generalized ‘local angular velocity’ relation for the amplitude-
phase solutions:

φ̇j = 3j

u2
j

(14)

where3j is a constant that has been referred to as the angular momentum parameter or the
mixing parameter [4]. Provided the norms of the complex amplitudes do not vanish, and
3j 6= 0, the functionφ̇j has a definite sign. In this work we consider3j > 0.

From (13) we also see that:

u̇j · u∗j − u̇∗j · uj = constant. (15)

A second look at the equation shows that the right-hand side of (15) will differ from zero
if the initial conditions are not purely real. This can in general be seen as an invariant for
the vector-Milne solutions. Let us define this vector-Milne invariant as a real quantityMj

from the equation

Mj = (u̇j · u∗j − u̇∗j · uj )/(2i) = Im [u̇j · u∗j ]. (16)

This invariant is always zero in the scalar Milne equation and plays no role in the
corresponding parametric oscillator dynamics.

Any solution of the oscillator equation (7) is specified by 2N independent integration
constants (e.g. the initial position and velocity). We associate with this equation 2N complex
fundamental solutions(fj ,f ∗j ), j = 1, . . . , N , that later will be subject to the amplitude-
phase decompositions (10) and (11). From the theory of (more general) linear equations
[28] with Hermitian symmetryk†(t) = k(t), arbitrary real solutionsr(t) would thus
have 2N Wronskian constants (associated with any set of complex fundamental solutions
fj , j = 1, . . . , N), namely

Wj = p · fj − r · ḟj (17)

with p = ṙ. These constant Wronskians are, together with their complex conjugates, nothing
less than the ‘linear’ time-dependent integrals obtained from Noether’s theorem by Castaños
et al [15]. The values depend of course on various initial conditions of the elements. To
fit into the Hamiltonian scheme of symplectic phase-space flow, it is important that the
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fundamental solutions form a complexified version of a symplectic matrix basis, which is
always possible to construct (see Lichtenberg and Lieberman [25]). The main requirement
for complex fundamental solutions is the proper normalization according to:

ḟj · f ∗j − fj · ḟ ∗j = 2i j = 1, 2, . . . , N. (18)

The main item in the further refinement of the Ermakov–Lewis invariants is the
amplitude-phase decomposition of the set of fundamental solutions. The differentiated
expressions of our amplitude-phase solutionsRj are given by:

Ṙj =
(
u̇j + i3j

uj

u2
j

)
eiφi (19)

and

Ṙ∗j =
(
u̇∗j − i3j

u∗j
u2
j

)
e−iφi . (20)

The normalization (18) is generally not satisfied by the basic amplitude-phase functions.
The normalization constantsnj are therefore determined from the initial values. We find
the condition:

n2
j (u̇j (0) · u∗j (0)− u̇∗j (0) · uj (0)+ 2i3j) = 2i j = 1, 2, . . . , N (21)

i.e. from (15)

nj = 1√
Mj +3j

. (22)

In terms of normalized amplitude-phase solutions, the Wronskian constantWj is now
expressed as

Wj = 1√
Mj +3j

(
ṙ · uj − r · u̇j − i3j

(
r · uj
u2
j

))
eiφj (t). (23)

Finally we construct theN generalized ‘Ermakov–Lewis invariants’ according to the
prescription

Lj = 1
2WjW

∗
j . (24)

We are thus left with only half of the number of integration constants, i.e.N ; one Ermakov–
Lewis invariant for each dimension (or normal mode). Formula (24) is the main result of
this letter.

In the limit of decoupled oscillators the independent amplitude vectors take the form

uj (t) = u∗j (t) =


...

0
ρj (t)

0
...

 (25)

with the real functionρj (t) satisfying Milne’s differential equation (4) withk(t) = kjj (t),
and we immediately see that the realness ofρj (t) implies thatMj = 0. Hence, the general
Ermakov–Lewis invariants reduce to the form (6) for each separate oscillator in agreement
with previous studies [18].

This result has a great potential of further developments. The Ermakov–Lewis invariants
are currently of interest in canonical formulations of the action-angle type, where the angular
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velocities realistically follow the true ‘geometric’ vortex-tube motion [4, 6, 22]. Indeed,
some tubes in time-periodic models [6] look dramatically flat and folded so that the winding
process is certainly not uniform. Furthermore, the approximations introduced in [23] suggest
a theoretical frame for systematic (higher-order) adiabatic descriptions of coupled oscillators,
related to Fulling’s work [26, 27].

The amplitude phase decomposition of a set of independent solutions is the crucial
step in the construction of the Ermakov–Lewis invariants. This decompositionper sehas
an interesting theoretical aspect connected to it. It introduces quantities (amplitude and
phase) that can be made considerably less oscillating than the solution itself. However,
the decomposition used here turns out not to be unique. In fact, the ‘mixing parameters’
3j are rather arbitrary, and some choices of them can of course be inadequate for the
description of the solution (this will be demonstrated for Floquet solutions below). Still, all
choices lead to exact representations of the solution. The best choice can sometimes not be
definitely determined, but there are cases with particular symmetries that allow criteria for
such choices.

For example, in the case of a time-periodic coefficientk(t), one is interested in finding
periodic amplitude vectorsuj (t). The experience from the research on one-dimensional
systems is that the single-amplitude component (Milne’s solution) should be periodic in
order to describe the canonical phase-space vortex flow correctly. For other choices of the
amplitude function the invariant tube, corresponding to a given Ermakov–Lewis invariant,
would not be periodic with the same cross section area as the phase-space period map.
Hence, there is an obvious interest to secure periodic functionsuj (t) also in this more
general system.

One of the difficulties here is that we have to deal withcomplex quantities, another
that we need vectors. Let us review the one-dimensional stable parametric oscillations in
the complex-amplitude formulation and show the existence of such periodic amplitudes (cf
[29] with real Milne solutions).

Our first assumption is that equation (3) with periodic and realk(t) has two independent
Floquet solutions given by

8F(t) = P(t)eiαt and 8∗F (t) = P ∗(t)e−iαt (26)

with a periodic complex functionP(t + T ) = P(t) and a real characteristic coefficient
α > 0. Without loss of generality we can always consider one initial condition to be real
and positiveP(0) > 0, since the oscillator equation is linear.

Our second main assumption is that any solution of (3) has its amplitude-phase
decomposition according to the complex version presented here, which is exact. The new
situation is that the complex amplitude functions satisfy the one-component version of
equation (12) rather than Milne’s original equation (4).

Hence, we can conclude that the existing Floquet solution8F(t) gives rise to the
following equation:

P(t)eiαt = u(t)eiφ(t) (27)

with a real and positive phase function satisfyingφ(0) = 0. The differentiated equation,
with due regard to (14), is then given by

(Ṗ (t)+ iαP (t))eiαt =
(
u̇(t)+ i3

u(t)

|u(t)|2
)

eiφ(t). (28)

The two relations (27) and (28) allow us to specify the initial conditions for the function
u(t) and its derivative. We note thaṫu(0) will depend on the actual value used for the
‘mixing parameter’3.
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We now argue thatu(t) can be found periodic. From equality (27) we immediately see
that the absolute value of the amplitude|u(t)|(= |P(t)|) is in fact periodic and independent
of 3, but perhaps not the phase ofu(t). The parameter3 thus monitors the amount of
the total phase to be explicit inφ(t) and the rest hidden inu(t). Since anyway|u(t)| is
periodic and positive and independent of3, we have

φ(nT ) = 3
∫ nT

0
|u(t)|−2 dt = nφ(T ) (29)

so that we can always find a suitable3 = 3d to satisfy the equationφ(T ) = αT . As a
result

3d = αT∫ T
0 |P(t)|−2dt

(30)

and

u(t) = P(t)ei(αt−φd(t)) (31)

is a periodic complex-valued function, withφd(t) specified by the choice3 = 3d . A closer
look at the complex equation foru(t) in one dimension also reveals thatu(t) will be real
if k(t) is real and Imu(0) = Im u̇(0) = 0.

In an equivalent proof we could have started with the equalities:

AP(t)eiαt = u(t)eiφ(t) (32)

with any constantA, and

A(Ṗ (t)+ iαP (t))eiαt =
(
u̇(t)+ i3

u(t)

|u(t)|2
)

eiφ(t). (33)

This finally leads to a different ‘mixing parameter’3d(A) = 3d/A
2, which is a consequence

of the scaling symmetry of the Milne equation (4) which prevails in (12). A generalization
to finding the periodic complex vectorsuj (t) if independent Floquet solutions of the above
type exist is now straightforward.

Our result can be summarized as follows. We have derived time-dependent invariants
which are linear as well as quadratic in momenta. Both types of invariants are directly
related to the well known Wronskian constants for linear equations, but the Ermakov–Lewis
invariant (quadratic in momenta) also uses a non-trivial amplitude-phase decomposition of a
fundamental set of solutions. The theory is a new tool for analysing stable coupled oscillators
with varying (periodic or not) parameters. We note that amplitude-phase decompositions
have a wider applicability than Floquet solutions, since they are valid notions also in non-
periodic dependences of time.
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[15] Castãnos O, Lopez-Pena R and Man’ko V I 1994 J. Phys. A: Math. Gen.27 1751
[16] Kaushal R S and Korsch H J 1981J. Math. Phys.22 1904
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